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SECOND-ORDER FREDHOLM EQUATIONS

FOR THE FIRST BOUNDARY-VALUE PROBLEM

IN THE TWO-DIMENSIONAL ANISOTROPIC THEORY OF ELASTICITY

UDC 539.3Yu. A. Bogan

A complete potential theory is constructed for the first boundary-value problem in the two-dimensional
anisotropic theory of elasticity (the force vector is specified on the boundary) in a bounded domain
on a plane with a Lyapunov boundary.
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Introduction. The method of integral equations has been actively used in the theory of elasticity (see,
for example, [1–4]). In this case, boundary-value problems are reduced, as a rule, to systems of singular integral
equations. If the basic boundary-value problem has a zero index, its corresponding system of equations can be
regularized; i.e., it can be reduced to a system of second-order Fredholm equations. The question arises: can it
be at once reduced to a regular system of equations? In the three-dimensional theory of elasticity there is the
so-called Weil antenna potential [5], which is used to obtain a system of regular integral equations. As noted in
[4], it corresponds to an elastic solution obtained by superposition of the solutions for half-space loaded over the
surface by a point force (the Boussinesq solution). In the two-dimensional theory of elasticity for isotropic materials
there is a similarly constructed solution [6] of the static problem for external forces specified on the boundary. In
the theory of elasticity, Sherman [7] proposed a system of second-order Fredholm equations that allows a solution
of the boundary-value elasticity problem for the force vector specified on the boundary. Later the author of the
present paper gave a simplified derivation of it [8]. This system of equations has a significant drawback: instead of
forces, its right side contains their integrals along the boundaries. Therefore, it is desirable to have a similar system
of equations in which the right side is the force vector specified on the boundary. Such a system of equations is
constructed in the present paper. The proposed approach consists of constructing an analog of the Weil antenna
potential for anisotropic media. For isotropic media, this leads to the system of equations written in complex form
in [6]. We note that this system of equations does not coincide with the system obtained by the conventional
approach using the fundamental solution of the basic system of differential equations since that approach leads to
a system of singular integral equations. To derive this system, one does not need to know the fundamental solution
of the elasticity equations and perform cumbersome calculations. It suffices to know that the boundary-value
problem satisfies the Lopatinskii condition [9]. There are several rather complex formulations of this condition;
we only note that it amounts to the existence of a single solution (decaying at infinity) of the elliptic boundary-
value problem in any half-plane tangent to the boundary of the domain and implies that a certain determinant
related to the boundary-value problem is different from zero. The system of equations of the two-dimensional
anisotropic theory of elasticity has simple complex characteristics, which considerably simplifies its construction.
This system of equations is adequate to the boundary-value problem and allows one to use minimum assumptions
on the smoothness of the boundary and boundary data in the Hölder classes of functions. It can also be used in
the case where the cores of integral operators lose the Fredholm property. In this case, passage to the limit for
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an isotropic material does not involve any difficulties. A similar system of equations was constructed in [10] but
this paper has a number of significant drawbacks; namely, it is not proved that the cores of the integral operators
appearing in the system have a weak singularity or are continuous (therefore, the equations cannot be considered
Fredholm equations), and accurate assumptions on the smoothness of the boundary of the domain are not indicated.
It should be noted that in the literature there is no theorem on the solvability of the examined boundary-value
problem under these assumptions even for isotropic materials.

1. Let us carry out a formal construction of this system of equations under the assumption of correctness
of the calculations performed, which will be justified below. Using the notation of [11], the stresses σij (i, j = 1, 2)
are expressed in terms of the derivatives of the analytical functions Φk(zk) (zk = x1 + µkx2) as follows:

σ11 = Re [µ2
1Φ

′
1(z1) + µ2

2Φ
′
2(z2)], σ22 = Re[Φ′

1(z1) + Φ′
2(z2)],

σ12 = −Re [µ1Φ′
1(z1) + µ2Φ′

2(z2)].

In this case, the displacement vector is determined with accuracy up to a rigid displacement and is given by

u1 = Re [p1Φ1(z1) + p2Φ2(z2)] + αx2 + β1,

u2 = Re [q1Φ1(z1) + q2Φ2(z2)] − αx1 + β2.

Here µk (k = 1, 2) are complex parameters of the anisotropic material, α and βk (k = 1, 2) are real constants,
pk = a11µ

2
k + a12 − a16µk and qk = a12µk + a22µ

−1
k − a26 (k = 1, 2). The coefficients aij (i, j = 1, 2, 6) are

determined from Hooke’s law

e11 = a11σ11 + a12σ22 + a16σ12, e22 = a12σ11 + a22σ22 + a26σ12,

2e12 = a16σ11 + a26σ22 + a66σ12, eij =
1
2

( ∂ui

∂xj
+
∂uj

∂xi

)
, i, j = 1, 2,

where eij (i, j = 1, 2) are strains. It is assumed that the matrix of the elastic constants is positively determined.
We denote by n = (n1, n2) [n1 = −x′2(s) and n2 = x′1(s)] the vector of the internal normal to the straightened
Jordan boundary ∂Q of length L of a simply connected bounded domain Q on a plane. In addition, x1(s), x2(s)
∈ C1,λ(0, L), 0 < λ < 1, i.e., the functions x1(s) and x2(s) that specify the shape of the boundary are continuous
and are continuously differentiable, and the normal vector satisfies Lyapunov condition. The origin is inside the
domain.

The boundary conditions in terms of forces are written as

σ11n1 + σ12n2

∣∣∣
∂Q

= g1(s), σ12n1 + σ22n2

∣∣∣
∂Q

= g2(s), (1)

where s is an arc length reckoned counterclockwise from a certain fixed point on the boundary. We set tk(s)
= x1(s) + µkx2(s) (k = 1, 2). Boundary conditions (1) are then written as

Re {−µ1t
′
1(s0)Φ

′
1(t1(s0)) − µ2t

′
2(s0)Φ

′
2(t2(s0))} = g1(s0),

Re {t′1(s0)Φ′
1(t1(s0)) + t′2(s0)Φ

′
2(t2(s0))} = g2(s0).

(2)

Here tk(s0) = x1(s0) + µkx2(s0) (k = 1, 2); the prime denotes the derivative with respect to s. We write the
functions Φ′

1(z1) and Φ′
2(z2) as Cauchy type integrals:

Φ′
k(zk) =

1
πi

∫

∂Q

bk(s)(tk(s))−1 ds

tk − zk
, k = 1, 2.

The densities bk(s) (k = 1, 2) appearing in these integrals are complex and are determined by solving the simple
system of equations

−µ1b1 − µ2b2 = f1(s), b1 + b2 = f2(s). (3)

In (3), the functions fk(s) (k = 1, 2) are real. Let us clarify how system (3) appears. We consider the
particular case — the solution of the initial boundary-value problem in the half-plane x2 > 0. We write the
functions appearing in the solution as Cauchy integrals and attempt to satisfy boundary conditions (1). Then, the
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densities appearing in these integrals satisfy relation (3). For the half-plane that is tangent to the domain at any
point of the boundary (in a local rectangular coordinate system attached to this point), the solution of this problem
is also system (3). Solving it, we obtain

Φ′
1(z1) = − 1

πi(µ1 − µ2)

∫

∂Q

(f1 + µ2f2)[t′1(s)]
−1 dt1

t1 − z1
,

Φ′
2(z2) =

1
πi(µ1 − µ2)

∫

∂Q

(f1 + µ1f2)[t′2(s)]
−1 dt2

t2 − z2
.

For the Cauchy integral, the Sokhotskii formulas hold [6]:

lim
zj→tj

1
πi

∫

∂Q

ϕ(s)
dtj

tj − zj
= ϕ(s0) +

1
πi

∫

∂Q

ϕ(s)
dtj

tj − tj0
, z ∈ Qi,

lim
zj→tj

1
πi

∫

∂Q

ϕ(s)
dtj

tj − zj
= −ϕ(s) +

1
πi

∫

∂Q

ϕ(s)
dtj

tj − tj0
, z ∈ Qe.

Here Qi = Q, Qe is an outer domain with respect to Q, tj0 = tj(s0), and ϕ(s) ∈ C0,λ(∂Q). From this it follows
that

σkj(u(x,f)nj)i(s0) − σkj(u(x,f)nj)e(s0) = 2fk(s0), k = 1, 2.

Here σkj(u(x,f)nj)i(s0) and σkj(u(x,f)nj)e(s0) are the limiting values of the force vector with approach to the
boundary from inside the domain and outside it, and u(x,f) is the simple layer potential defined below. Therefore,
from boundary conditions (2) we obtain the following system of integral equations:

f1(s0) + Re
µ1t

′
1(s0)

πi(µ1 − µ2)

∫

∂Q

(f1 + µ2f2)[t′1(s)]−1 dt1
t1 − t10

− Re
µ2t

′
2(s0)

πi(µ1 − µ2)

∫

∂Q

(f1 + µ1f2)[t′2(s)]
−1 dt2

t2 − t20
= g1(s0); (4)

f2(s0) − Re
t′1(s0)

πi(µ1 − µ2)

∫

∂Q

(f1 + µ2f2)[t′1(s)]
−1 dt1

t1 − t10
+ Re

t′2(s0)
πi(µ1 − µ2)

∫

∂Q

(f1 + µ1f2)[t′2(s)]
−1 dt2

t2 − t20
= g2(s0). (5)

Here tk0 = x1(s0) + µkx2(s0) (k = 1, 2). System (4), (5) is conjugate after Fredholm to the system of equations

ψ1(s0) − Re
1

πi(µ1 − µ2)

∫

∂Q

(ψ2 − µ1ψ1) dt1
t1 − t10

+ Re
1

πi(µ1 − µ2)

∫

∂Q

(ψ2 − µ2ψ1) dt2
t2 − t20

= h1(s0); (6)

ψ2(s0) − Re
µ2

πi(µ1 − µ2)

∫

∂Q

(ψ2 − µ1ψ1) dt1
t1 − t10

+ + Re
µ1

πi(µ1 − µ2)

∫

∂Q

(ψ2 − µ2ψ1) d t2
t2 − t20

= h2(s0). (7)

It is easy to verify by direct calculations that system (6), (7) has the eigenvector functions

w1 = (1, 0), w2 = (0, 1), w3 = (−x2(s), x1(s)).

The proof that all integrals appearing in system (6), (7) have at the utmost a weak singularity at the
Lyapunov boundary is similar to that given in [12] and is therefore omitted. Consequently, for mutually conjugate
systems of Eqs. (4) and (5) and Eqs. (6) and (7), all Fredholm theorems are valid. Thus, in order that Eqs. (4) and
(5) be solvable, it is necessary and sufficient that their right sides be orthogonal to all solutions of the homogeneous
equations (6) and (7), respectively, and vice versa.
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Since system (4), (5) is intended to solve the first boundary-value problem, equilibrium conditions should
be satisfied; i.e., the main vector and the resultant moment of the applied forces should vanish. Otherwise, the
following equalities should hold:∫

∂Q

gk(s) ds = 0, k = 1, 2,
∫

∂Q

(x1(s)g2(s) − x2(s)g1(s)) ds = 0. (8)

To verify this statement, we multiply Eqs. (4) and (5) into ds0 and integrate the result over s0 taking into account
that ∫

∂Q

t′k0 ds0
tk − tk0

= −πi.

Then, the left sides of Eqs. (4) and (5) vanish and we obtain the first two equalities (8). Similarly, we multiply
Eq. (5) into −x2(s0) and equation (4) into x1(s0), change the order of integration, and integrate over s0. As a
result, we obtain the third equality of (8). Thus, equalities (8) are necessary in order that system (4), (5) have a
solution.

The solution of the first boundary-value problem is given by the simple layer potential, which in this case is
written as

u1(x, y,f) = Re
p1

(µ1 − µ2)πi

∫

∂Q

(f1 + f2µ2) ln (z1 − t1) ds− Re
p2

(µ1 − µ2)πi

∫

∂Q

(f1 + f2µ1) ln (z2 − t2) ds,

u2(x, y,f) = Re
q1

(µ1 − µ2)πi

∫

∂Q

(f1 + f2µ2) ln (z1 − t1) ds− Re
q2

(µ1 − µ2)πi

∫

∂Q

(f1 + f2µ1) ln (z2 − t2) ds
(9)

(for definiteness, the main branch of the logarithm is chosen). Le us consider the properties of the simple layer
potential in greater detail. In order that integrals (9) exist, it suffices that the densities f1 and f2 be continuous.
In this case, u1 and u2 are continuous on the entire plane, but at infinity they grow in a logarithmic manner. The
following lemma is valid.

Lemma 1. For the simple layer potential with a continuous density f = (f1, f2) that satisfies the relation∫

∂Q

fi ds = 0, i = 1, 2,

the following estimates are valid:

|ui(x, f)| < c

|x| ,
∣∣∣ ∂ui

∂xj

∣∣∣ < c1
|x|2 , i, j = 1, 2, |x| =

√
x2

1 + x2
2.

To prove the lemma, we consider the typical integral appearing in (9):∫

∂Q

f(s) ln (zk − tk) ds.

Here f(s) is any density. We write f as the derivative

f(s) =
d

ds

( s∫

0

f(s) ds
)

=
d

ds
τ(s).

Integration by parts yields the equality∫

∂Q

dτ

ds
ln (zk − tk) ds = τ(s) ln (z1 − t1)

∣∣∣
∂Q

−
∫

∂Q

τ(s)
dtk

tk − zk
. (10)

The first term on the right side of formula (10) vanishes if τ(L) = 0; the second term is a single-value Cauchy
integral. The equality τ(L) = 0 implies that the conditions of the lemma are satisfied. The remaining statements
of the lemma are obvious. This implies that the functions v1(x1, x2) are v2(x1, x2) are single-valued.
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We set f = (f1, f2) and denote the simple layer potential by

u(x,f) = (u1(x,f), u2(x,f)), ui(x,f) =
2∑

j=1

∫

∂Q

Gijfj(s) ds, i = 1, 2.

Here Gij (i, j = 1, 2) are the cores of the integral operators in (9). We introduce the matrix G(x) = (Gij(x))
(i, j = 1, 2) and write the simple layer potential in vector form

u(x,f) =
∫

∂Q

G(x − y)f ds.

Lemma 2. The system of integral equations (6) and (7) has three and only three linearly independent
solutions

f1 = (1, 0), f2 = (0, 1), f3 = (−x2(s), x1(s)).

Indeed, if this statement were wrong, system (4), (5), which is conjugate to (6) and (7), would also have
more than three linearly independent solutions wk(s) (k > 3). Each of them corresponds to a simple layer poten-
tial v(x, fk), for which σij(v(x, fk)nj) = 0 on the boundary of the domain.

Let there exist one more solution f4(s) that is linearly independent of the previous ones; then, the expression

f(s) = f4(s) −
3∑

j=1

cjfj(s)

[cj (j = 1, 2, 3) are arbitrary real constants] is also a solution of the homogeneous system of Eqs. (6) and (7). Let
us compose the simple layer potentials

u(x, f4), u(x, fj), j = 1, 2, 3.

As solutions of homogeneous boundary-value problems, they are rigid-displacement vectors

u(x) = u(x, f4) −
3∑

j=1

u(x, fj).

We choose the constants c1, c2, and c3 such that the following conditions are satisfied:

u(0) = 0,
∂u2

∂x1
− ∂u1

∂x2
= 0.

In this case, vk satisfy the system
∂ui

∂xj
+
∂uj

∂xi
= 0, i, j = 1, 2.

These conditions can be written as
3∑

j=1

cj

∫

∂Q

G(x2)ϕj(s) ds =
∫

∂Q

G(x2) ds,

3∑
j=1

cj

∫

∂Q

G0(x2)ϕj(s) ds =
∫

∂Q

G0(x2) ds,

where

G0(x2) =
∂G2

∂x2
− ∂G1

∂x1
.

The determinant of this system of equations is different from zero by virtue of the linear independence of wj

(j = 1, 2, 3). Solving this system for cj (j = 1, 2, 3), we obtain u(x1, x2) = 0, where (x1, x2) ∈ Qi. The continuity
of the potential on the entire plane implies that u(x) = 0 on ∂Q. Since u(x) obeys Lemma 1, at infinity we have

|u(x1, x2)| < c/
√
x2

1 + x2
2, |σij(u(x))| < c1/(x2

1 + x2
2).
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Therefore, u(x1, x2) = 0, where (x1, x2) ∈ Qe. But then, according to the Sokhotskii formula, the discontinuity
of the force vector on the boundary is zero and f4 = 0. We have an inconsistency. In the case where the force
vector is specified on the boundary, we denote the solution of the internal boundary-value problem by (I,Qi) and
the solution of the external boundary-value problem by (I,Qe). The following lemma is valid.

Lemma 3. Problem (I,Qi) has a single solution with accuracy up to the linear combination c1w1 + c2w2

+ c3w3, where

w1 = (0, 1), w2 = (1, 0), w3 = (−x2, x1),

and the functions wk (k = 1, 2, 3) constitute the full set of solutions of the system

∂vi

∂xk
+
∂vk

∂xi
= 0, i, k = 1, 2.

The proof of Lemma 3 follows from the validity of the integral equality∫

Qi

σij(v)eij(v) dx =
∫

∂

Qσij(v)viνj ds. (11)

Here ν is an outward normal with respect to Qi. For the functions v that have the properties

|v| ≤ c,
∣∣∣∂vk

∂xi

∣∣∣ ≤ c

|x|2 (i, k = 1, 2) (12)

for large |x| and satisfy the homogeneous system of elasticity equations in the unbounded domain Qe, the following
integral equality is valid: ∫

Qe

σij(v)eij(v) dx = −
∫

∂

Qσij(v)viνj ds. (13)

Equality (13) follows from the integral equality (11) for a bounded domain. Indeed, we consider the domain
located between the boundary ∂Q and a circle of large radius R with center lying inside Qi. For this domain,
equality (11) is valid. By virtue of (12), the integral over the outer circumference tends to zero as R → ∞.
Therefore, equality (13) follows from the vanishing of the integral over the circle of radius R and from the absolute
convergence of the integral over Qe. This implies the following lemma.

Lemma 4. The solution of problem (I,Qe) in the class of functions that possess property (12) is unique
with accuracy up to a constant vector, and if u → 0 as |x| → ∞, the solution of problem (I,Qe) is unique.

System (4), (5) can be modified so that it becomes solvable for any right side. Indeed, let us supplement
Eq. (4) by the terms

−Re
µ1

2πi(µ1 − µ2)
t′1(s0)
t1(s0)

∫

∂Q

(f1 + µ2f2) ds+ Re
µ2

2πi(µ1 − µ2)
t′2(s0)
t2(s0)

×
∫

∂Q

(f1 + µ1f2) ds− Re
1

4πi

(
− µ1

∂

∂s0

1
t1(s0)

− µ2
∂

∂s0

1
t2(s0)

)
M,

and Eq. (5) by the terms

−Re
1

2πi(µ1 − µ2)
t′1(s0)
t1(s0)

∫

∂Q

(f1 + µ2f2) ds+ Re
1

2πi(µ1 − µ2)
t′2(s0)
t2(s0)

×
∫

∂Q

(f1 + µ1f2) ds− Re
1

4πi

( ∂

∂s0

1
t1(s0)

+
∂

∂s0

1
t2(s0)

)
M,

where M is a real constant. Since ∫

∂Q

dtk(s0)
tk(s0)

= 2πi (k = 1, 2)
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(the coordinate origin is inside the domain), we have∫

∂Q

fk(s) ds =
∫

∂Q

gk(s) ds (k = 1, 2),

M =
∫

∂Q

(−x2(s)g1(s) + x1(s)g2(s)) ds.

If the main vector and the resultant moment of the applied forces are equal to zero, the system of equations with
these terms is equivalent to system (4), (5). In order that it be meaningful, it is necessary to set gk(s) ∈ C0,λ(∂Q)
(k = 1, 2). Then, fk(s) ∈ C0,λ(∂Q) (k = 1, 2). It is not quite obvious that this is a system of second-order Fredholm
equations. Equations (4) and (5) can be written as

f1(s0) + Re
t′1(s0)
πi

∫

∂Q

f1(s)
[t′1(s)]

−1 dt1
t1 − t10

+ Re
µ2

πi(µ1 − µ2)

∫

∂Q

(f1 + µ1f2)
( t′2(s0)
t2 − t20

− t′1(s0)
t1 − t10

)
ds = g1(s0); (14)

f2(s0) + Re
t′2(s0)
πi

∫

∂Q

f2(s)
(t′2(s))

−1 dt1
t2 − t20

+ Re
1

πi(µ1 − µ2)

∫

∂Q

(f1 + µ2f2)
( t′1(s0)
t1 − t10

− t′2(s0)
t2 − t20

)
ds = g2(s0). (15)

Thus, system (14), (15) is a system of second-order Fredholm equations.
The main result of the study is formulated as follows.
Theorem 1. Let

gk(s) ∈ C0,λ(∂Q), k = 1, 2, ∂Q ∈ C1,λ(0, L), 0 < λ < 1.

In order that system (14), (15) have a solution in the class C0,λ(∂Q), where uk(x) ∈ C1,λ(Q) (k = 1, 2), it
is necessary and sufficient that the main vector and the resultant moment of the applied forces vanish. In this case,
the solution of the boundary-value problem is uk(x) ∈ C1,λ(Q ) (k = 1, 2).

Proof. We seek a solution of the boundary-value problem in the form of the simple layer potential
u = (u1(x,f), u2(x,f)). Then, the density f = (f1, f2) satisfies system (4), (5). Since all Fredholm theorems
are valid for the pair of conjugate integral equations (4), (5) and (6), (7), system (4), (5) is solvable if an only if the
vector function g = (g1, g2) is orthogonal to all solutions of the homogeneous system of Eqs. (6) and (7). According
to Lemma 2, the general solution of the homogeneous system of Eqs. (6) and (7) is the rigid-displacement vector
ϕ = (ϕ1, ϕ2) (ϕ1 = −c3x2 + c1 and ϕ2 = c3x1 + c2, where c1, c2, and c3 are arbitrary real constants). Equalities (8)
imply that the solution of the homogeneous system (6), (7) is orthogonal to the vector function g = (g1, g2); there-
fore, they guarantee the existence of a solution of system (4), (5). The same equalities are necessary solvability
conditions, as follows from the Betty formula:

0 =
∫

∂Q

σijnjϕi ds =
∫

∂Q

giϕi ds.

The relations obtained are equivalent to the equilibrium conditions. The smoothness of the solution is
increased by increasing the smoothness of the boundary and the boundary data. The following theorem is valid.
Theorem 2. Let

gk(s) ∈ Cl,λ(∂Q), k = 1, 2, ∂Q ∈ Cl+1,λ(0, L), 0 < λ < 1, l ≥ 1.

Then, the solution of the boundary-value problem belongs to the class Cl+1,λ(Q ). This result follows from the
smoothness properties of the Cauchy integral ([13, Theorem 8]).

2. We consider the solution for an isotropic material. In the case of isotropy,

a11 = a22 = 1/E, a12 = −ν/E, a66 = 1/G, a16 = a26 = 0,

where E is Young’s modulus, G is the shear modulus, and ν is Poisson’s constant. As µ1, µ2 → i, the passage to
the limit is performed. As a result, for an isotropic material we have the following system of equations:

f1(s0) + Re
t′(s0)
πi

∫

∂Q

f1(s)[t′(s)]−1 dt

t− t0
+ Re

1
2πi

∫

∂Q

(f1 + if2)
(t̄− t̄0) dt− (t− t0) dt̄

(t− t0)2
= g1(s0),
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f2(s0) + Re
t′(s0)
πi

∫

∂Q

f2(s)[t′(s)]−1 dt

t− t0
+ Re

i

2πi

∫

∂Q

(f1 + if2)
(t̄− t̄0) dt− (t− t0) dt̄

(t− t0)2
= g2(s0).

(16)

Here t = x1(s) + ix2(s) and t0 = x1(s0) + ix2(s0). We bring system (16) to one (complex) equation for the
complex(integrated) density ω(s) = f1(s) + if2(s). This system is equivalent to the system of equations in [6].

We denote by (u1
1(x), u1

2(x)) the displacement vector components for an isotropic material. Then,

u1
1(x) = Re

[ 2
E

1
π

∫

∂Q

f1(s) ln (z − t) ds+
1 + ν

E

1
π

∫

∂Q

f1(s)
i(η − x2)
t− z

ds
]

+ Re
[1 − ν

E

1
π

∫

∂Q

if2(s) ln (z − t) ds+
1 + ν

E

1
π

∫

∂Q

f2(s)
i(η − x2)
t− z

ds
]
,

u1
2(x) = Re

[1 − ν

E

1
πi

∫

∂Q

f1(s) ln (z − t) ds− 1 + ν

E

1
πi

∫

∂Q

f1(s)
i(η − x2)
t− z

ds
]

+ Re
[ 2
E

1
πi

∫

∂Q

if2(s) ln (z − t) ds− 1 + ν

E

1
πi

∫

∂Q

if2(s)
i(η − x2)
t− z

ds
]
,

where z = x1 + ix2 and η = x2(s).
We note that the above representation of displacements for an isotropic material has not been proposed

previously.
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